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Abstract. In the context of the formalism proposed by Stelle–West and Grignani–Nardelli, it is shown that
Chern–Simons supergravity can be consistently obtained as a dimensional reduction of (3+1)-dimensional
supergravity, when written as a gauge theory of the Poincaré group. The dimensional reductions are consistent
with the gauge symmetries, mapping (3+1)-dimensional Poincaré supergroup gauge transformations onto
(2 + 1)-dimensional Poincaré supergroup ones.

1 Introduction

Supergravity in (2+1) [1,2] and in (3+1) [3,4] dimensions
can be formulated as a gauge theory of the Poincaré su-
peralgebra. The first-order formalism permits one to write
the 3-dimensional supergravity as a Chern–Simons the-
ory [5], for which (2 + 1)-dimensional supergravity is a
good theoretical laboratory for the construction of a quan-
tum theory [6]. Then it is interesting to find a link between
supergravities in (2 + 1) and in (3 + 1) dimensions.

The action for supergravity in (2 + 1) dimensions, S =∫ (
εabcR

abec + 4ψDψ
)
, with ψ a two component Majorana

spinor, is invariant under Lorentz rotations, Poincaré trans-
lations and supersymmetry transformations. The dreibein
ea
µ, the spin connection ωab

µ and the gravitino ψa
µ transform

as components of a connection for the superPoincaré group.
This means that the supersymmetry algebra implied by the
corresponding supersymmetry transformations is the super
Poincaré algebra.

(3 + 1)-dimensional supergravity invariant under the
Poincaré supergroup is based on the supersymmetric ex-
tension of the Stelle–West–Grignani–Nardelli formalism
(SWGN) [3, 7, 10]. The fundamental idea of the formal-
ism is founded on the definition [3,7,9] of the vierbein V A

and the gravitino Ψ , which involves the Goldstone fields
ξA, χ. In the supersymmetric extension of the SWGN for-
malism:
(i) the vierbein V A is not identified with the component
eA of the gauge potential along the translation generators,
but is given by

V A = DζA + eA + i
(
2ψ +Dχ

)
γAχ; (1)
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(ii) the gravitino field is not identifiedwith the componentψ
of the gauge potential along the supersymmetry generator,
but is given by

Ψ = ψ +Dχ,

where DζA = dζA + ωABζB , Dχ = dχ − 1
2ω

ABγAB and
where ωAB is the spin connection.

The purpose of the present work is to find the super-
symmetric extension of the successful formalism of [10,11].
This means that, in the context of the procedure of [10,11],
(3 + 1)-dimensional supergravity can be dimensionally re-
duced to Chern–Simons supergravity. This procedure can
be used because both supergravity in (2 + 1) [5] and su-
pergravity in (3 + 1) dimensions [3, 4] can be formulated
as theories genuinely invariant under the Poincaré super-
group.

This paper is organized as follows: In Sect. 2, we shall
review some aspects of the supersymmetric extension of
the Stelle–West formalism and of supergravity as a gauge
theory of the Poincaré supergroup. The dimensional reduc-
tion is carried out in Sect. 3 where the principal features of
the dimensional reduction process are presented. Section 4
concludes the work with brief comments.

2 Supergravity invariant
under the Poincaré group

In this section we shall review some aspects of the super-
symmetric extension of the Stelle–West formalism and of
supergravity as a gauge theory of the Poincaré group. The
main point of this section is to display the differences in
the invariances of the supergravity action when different
definitions of a vierbein are used.
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2.1 Non-linear realization

The non-linear realizations can be studied by the general
method developed in [12, 13]. Following these references,
we consider a Lie (super)group G and a subgroup H.

Let us call {Vi}n−d
i=1 the generators of H. We assume

that the remaining generators {Al}d
l=1 can be chosen so

that they form a representation of H. In other words, the
commutator [Vi,Al] should be a linear combination of
the Al alone. A group element g ∈ G can be represented
(uniquely) in the form

g = eξlAlh, (2)

where h is an element of H. The ξl parametrize the coset
space G/H. We do not specify here the parametrization of
h. One can define the effect of a group element g0 on the
coset space by

g0g = g0(eξlAlh) = eξ′lAlh′, (3)

or
g0e

ξlAl = eξ′lAlh1, (4)

where

ξ′ = ξ′(g0, ξ), (5)

h1 = h′h−1, (6)

h1 = h1(g0, ξ). (7)

If g0 − 1 is infinitesimal, (4) implies

e−ξlAl (g0 − 1) eξlAl − e−ξlAlδeξlAl = h1 − 1. (8)

The right-hand side of (8) is a generator of H.
Let us first consider the case in which g0 = h0 ∈ H.

Then (4) gives

eξ′lAl = h0e
ξlAlh−1

0 . (9)

Since the Al form a representation of H, this implies

h1 = h0; h′ = h0h. (10)

The transformation from ξ to ξ′ given by (9) is linear.
On the other hand, consider now

g0 = eξl
0Al . (11)

In this case (4) becomes

eξl
0AleξlAl = eξ′lAlh. (12)

This is a non-linear inhomogeneous transformation on ξ.
The infinitesimal form (8) becomes

e−ξlAlξi
0Aie

ξjAj − e−ξlAlδeξiAi = h1 − 1. (13)

The left-hand side of this equation can be evaluated, us-
ing the algebra of the group. Since the results must be a

generator of H, one must set equal to zero the coefficient
of Al. In this way one finds an equation from which δξi

can be calculated.
The construction of a Lagrangian invariant under coor-

dinate-dependent group transformations requires the intro-
duction of a set of gauge fields a = ai

µAidxµ, ρ = ρi
µVidxµ,

p = pl
µAldxµ, v = vi

µVidxµ, associated respectively with
the generators Vi and Al. Hence ρ + a is the usual linear
connection for the gauge group G, and the corresponding
covariant derivative is given by

D = d + f(ρ+ a) (14)

and its transformation law under g ∈ G is

g : (ρ+a) → (ρ′+a′) =
[
g(ρ+ a)g−1 − 1

f
(dg)g−1

]
, (15)

where f is a constant which, as it turns out, gives the
strength of the universal coupling of the gauge fields to all
other fields.

We now consider the Lie algebra valued differential
form [12]

e−ξlAl [d + f(ρ+ a)] eξlAl = p+ v. (16)

The transformation laws for the forms p(ξ,dξ) and v(ξ,dξ)
are easily obtained. In fact, using (11) and (12) one finds [14]

p′ = h1p(h1)−1, (17)

v′ = h1v(h1)−1 + h1d(h1)−1. (18)

Equation (17) shows that the differential forms p(ξ,dξ)
are transformed linearly byagroup element of the form(11).
The transformation law is the same as by an element of H,
except that now this group element h1(ξ0, ξ) is a function of
the variable ξ. Therefore any expression constructed with
p(ξ,dξ) which is invariant under the subgroup H will be
automatically invariant under the entire group G, the ele-
ments ofH operating linearly on ξ, the remaining elements
non-linearly.

2.2 Supersymmetric Stelle–West formalism

The basic idea of the Stelle–West formalism is founded on
the non-linear realizations in anti-de Sitter space [7]. The
supersymmetric extension of this formalism [4] is based
in the non-linear realizations of supersymmetry in anti-de
Sitter space [14]. The formalism considers as G the graded
Lie algebra

[PA, PB ] = −im2JAB ,

[JAB , PC ] = i (ηACPB − ηBCPA) ,

[JAB , JCD] = i(ηACJBD − ηBCJAD

+ ηBDJAC − ηADJBC),

[JAB , Qα] = i (γAB)αβ Qβ ,
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[PA, Qα] = − i
2
m(γA)αβQβ , (19)

[
Qα, Qβ

]
= −2

(
γA

)
αβ
PA − 2m(γAB)αβJAB ,

having as generatorsQα, PA andMAB . It has as a subalge-
bra H that of the de Sitter group SO(3, 2) with generators
PA andMAB . This, in turn, has as subalgebra L that of the
Lorentz group SO(3, 1) with generators Mab. An element
of G can be uniquely represented in the form

g = eχQh = eχQe−iξAPA l, (20)

where h ∈ H and l ∈ L. On can define the effect of a group
element g0 on the coset space G/H by

g0g = eχ′Qh′ = eχ′Qe−iξ′APA l′ (21)

or

g0e
χQ = eχ′Qh1, (22)

h1e
−iξAPA = e−iξ′APA l1, (23)

l1l = l′. (24)

Clearly h1 = h1(g0, χ) and l1 = l1(g0, χ, ξ).
If g0 − 1 and h1 − 1 are infinitesimals, (22) and (23)

imply

e−χQ (g0 − 1) eχQ − e−χQδeχQ = h1 − 1,(25)

eiξ
APA (h1 − 1) e−iξAPA − eiξ

APAδe−iξAPA = l1 − 1.(26)

We consider now the following cases. If g0 = l0 ∈ L (22)
and (23) give

eχ′Q = l0e
χQl−1

0 , (27)

h1 = l1 = l0, (28)

e−iξ′APA = l0e
−iξAPA l−1

0 . (29)

Both χ and ξ transform linearly. If, on the other hand, we
know only that g0 = h0 ∈ H, in particular, if

g0 = e−iρAPA (30)

is a pseudo-translation, (22) gives

eχ′Q = h0e
χQh−1

0 , (31)

h1 = h0, (32)

while (23) gives

h0e
iξAPa = e−iξ′APA l1(h0, ξ). (33)

In this case χ transforms linearly, but the transformation
law (33) of ξ under pseudo-translations is inhomogeneous
and non-linear. Infinitesimally

eiξ
APA

(
−iρBPB

)
e−iξAPA − eiξ

APAδe−iξAPA = l1 − 1.
(34)

Finally, if
g0 = eεQ (35)

is a supersymmetry transformation, one must use (22)
and (23) as they stand. Observe, however, that (23) has
the same form as (33) except for the fact that h1 is a func-
tion of χ while h0 is not. Therefore, the transformation
law for ξ under a supersymmetry transformation has the
same form as that under a de Sitter transformation but
with parameters which depend in a well defined way on χ.

An explicit form for the transformation law of ξa under
an infinitesimal AdS boost can be obtained from (34). The
result is

δξA = −ρA +
(
z cosh z
sinh z

− 1
) (

ρA − ρBξBξ
A

ξ2

)
, (36)

where z = m
√

(ξaξa) = mξ.
The transformation of ξA under an infinitesimal Lorentz

transformation l0 = e
i
2 κABJAB is

δξA = κABξB , (37)

and, under a local supersymmetry transformation (35), ξA

transforms as

δξA = −i
(

1 +
i
6
mχχ

)
εγAχ

+ i
(
z cosh z
sinh z

− 1
) (

δA
B − ξBξ

A

ξ2

) (
1 +

i
6
mχχ

)
εγBχ

− 2im
(

1 +
i
6
mχχ

)
εγABχξB . (38)

Using (25) with g0 − 1 = εQ, one finds that

δχ = ε− i
6
m

(
5χχ+ χΓAχΓ

A
)
ε+

1
9
m2 (χχ) ε,

(39)

h1 − 1 =
(

1 +
i
6
mχχ

) (
εγAχPA +mεγABχJAB

)
.

(40)

Working in first-order formalism, the gauge fields vier-
bein eA, spin connectionωAB and gravitinoψ are treated as
independent. The key observation is that the (eA, ωAB , ψ),
considered as a single entity, constitute a multiplet in the
adjoint representation of the AdS supergroup. That is, we
can write

A =
1
2

iωABJAB − ieAPA + +ψQ, (41)

where A is the gauge field of the AdS supergroup, PA,
JAB , Qα being the generators of the AdS boosts. Then,
based on these, we can define the corresponding non-linear
connections (V a,W ab, Ψ) from (16):
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1
2

iWABJAB − iV APA + ΨQ (42)

= eiξ
APAe−χQ

×
[
d+

1
2

iωABJAB − ieAPA + ψQ

]
eχQe−iξBPB .

If G = OSp(1, 4) and H = SO(3, 2), the gauge fields
V A form a square 4× 4 matrix which is invertible and can
be identified with the vierbein fields. In the same way we
have thatWAB is a connection and that Ψ can be identified
with the Rarita–Schwinger field. From (42) one can obtain
the fields V A,WAB , Ψ in terms of the fields eA, ωAB , ψ.
The results are given in (81), (83) and (84) of [4].

The corresponding transformation laws for V a,W ab, Ψ
can be obtained from (17) and (18). In fact, one can verify
that, under the AdS supergroup, the non-linear connections
transform as

Ψ
′
Q = h1

(
ΨQ

)
(h1)−1, (43)

−iV ′aPa = h1 (−iV aPa) (h1)−1, (44)

1
2

iW ′abJab = h1

(
1
2

iW abJab

)
(h1)−1 + h1d(h1)−1. (45)

The non-linearity of the transformation with respect
to the elements of G/H means that the labels associated
with the parts of the algebra of G which generate G/H are
no longer available as symmetry indices. In other words,
the symmetry has been spontaneously broken from G to
H. An irreducible representation ofG will, in general, have
several irreducible pieces with respect to H. Since, in con-
structing invariant actions, one only needs index saturation
with respect to the subgroup H, as far as the invariance
is concerned it is possible to select a subset of non-linear
fields with respect to G, which form irreducible multiplets
with respect to H.

2.3 Supergravity invariant under the AdS group

Within the supersymmetric extension of the Stelle–West
formalism, the action for supergravity with cosmological
constant [15] can be rewritten as

S =
∫
εabcdRabV cV d + 4Ψγ5γaDΨV a

+ 2α2εabcdV
aV bV cV d

+ 3αεabcdΨγ
abΨV cV d, (46)

which is invariant under the supersymmetric extension of
the AdS group. From such equations we can see that the
vierbein V a and the gravitino field transform homoge-
neously according to the representation of the AdS super-
algebra, but with the non-linear group element h1 ∈ H.

The corresponding equations of motion are obtained
by varying the action with respect to ξa, χ, ea, ωab, ψ. The
field equations corresponding to the variation of the action
with respect to ξa and χ are not independent equations.

Following the same procedure as in [16], we find that equa-
tions of motion for supergravity genuinely invariant under
Super AdS are

2εabcdR
ab
V c + 4Ψγ5γdρ, (47)

∧
T

,a

= 0, (48)

8γ5γaρV
a − 4γ5γaΨ

∧
T

a

= 0, (49)

where

∧
T

a

= T a − i
2
ΨγaΨ, (50)

Rab
= Rab + 4α2V aV b + αΨγabΨ = 0, (51)

ρ = DΨ − iαγaΨV a. (52)

2.4 Supergravity and the Poincaré group

Taking the limit m → 0 in (24), (73), (75), (76), (81), (83)
and (84) one can see that
(i) the superalgebra (19) takes the form of the superalgebra
of Poincaré

[PA, PB ] = 0,

[JAB , PC ] = i (ηACPB − ηBCPA) ,

[JAB , JCD] = i(ηACJBD − ηBCJAD

+ ηBDJAC − ηADJBC),

[JAB , Qα] = i (γAB)αβ Qβ ,

[PA, Qβ ] = 0,[
Qα, Qβ

]
= −2

(
γA

)
αβ
PA; (53)

(ii) the transformation laws of ξA under an infinitesimal
Poincaré translation, under an infinitesimal Lorentz trans-
formation, and under a local supersymmetry transforma-
tion are given respectively by

δξA = −ρA, (54)

δξA = κABξB , (55)

δξA = −iεγAχ, (56)

where ρA, κAB = −κBA and ε are the infinitesimal pa-
rameters corresponding to Poincaré translations, Lorentz
rotations and supersymmetry, respectively;
(iii) the transformation laws of χ under an infinitesimal
Poincaré translation, under an infinitesimal Lorentz trans-
formation, and under a local supersymmetry transforma-
tion are given respectively by

δχ = 0, (57)

δχ =
1
2
κABγABχ, (58)

δχ = −ε. (59)
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In this limit G is the Poincaré supergroup and H =
SO(3, 1), and the fields vierbein V A, the connectionWAB ,
and the Rarita–Schwinger field Ψ are given by

V A = eA +DζA + i
(
2ψ +Dχ

)
γAχ, (60)

WAB = ωAB , (61)

Ψ = ψ +Dχ, (62)

where now
D = d + ω. (63)

The corresponding components of the curvature two-form
are now

T A = DV A, (64)

RA
B = dωA

B + ωA
Cω

C
B . (65)

3 Supergravity in (2 + 1)
from supergravity in (3 + 1)

3.1 Supergravity in (3 + 1)

The limit m → 0 of the action (46) is obviously the action
for N = 1 supergravity in (3 + 1) dimensions:

S =
∫
εABCDR

ABV CV D + 4Ψγ5γADΨV
A, (66)

which is genuinely invariant under the Poincaré group.
In fact, d = 3 + 1 and N = 1 supergravity is based on
the Poincaré supergroup, whose generators PA, JAB , Q

α

satisfy the Lie superalgebra (53). Using this algebra and
the general form for gauge transformations on A,

δA = −Dλ = dλ− [A, λ] , (67)

with
λ =

1
2

iκABJAB − iρAPA + εQ, (68)

we see that eA, ωAB , and ψ, under local Lorentz rotations,
transform as

δeA = κA
Be

B ; δωAB = −DκAB ; δψ = − 1
2
κABγABψ,

(69)
and under local Poincaré translations transform as

δeA = DρA; δωAB = 0; δψ = 0; (70)

and under local supersymmetry transformations as

δeA = −2iεγAψ; δωAB = 0; δψ = Dε. (71)

This means that the vierbein V A transforms, under the
Poincaré supergroup, as

δV A = κA
BV

B . (72)

The space-time supertorsion
∧
T

A

is given by

∧
T

A

= T A − 1
2
ψ γAψ, (73)

where
T A = DV A. (74)

It is straightforward to verify that the action (66) is
invariant under (69), (70), (71), (54), (55), (56), (57), (58)
and (59).

3.2 Dimensional reduction

The dimensional reduction process, as well as the notation,
is similar to those used in [10,11]. Latin indices a, b, c, · · · =
0, 1, 2 and capital latin indicesA,B,C, ··· = 0, 1, 2, 3 denote
(2 + 1) and (3 + 1) internal (gauge) indices respectively.
They are raised and lowered by the Minkowski metric

ηab =


−1 0 0

0 1 0
0 0 1


 and ηAB =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (75)

In the dimensional reduction the first three values of
A,B,C, . . . will denote the corresponding (2 + 1) internal
indices a, b, c, . . ., i.e.A = (a, 3),B = (b, 3), C = (c, 3) , . . ..
We shall use the antisymmetric symbol εABCD with ε0123 =
1 and in (2 + 1) dimensions εabc = εabc3, so that ε012 = 1.

Following the procedure of [10] we carried out a dimen-
sional reduction of the Poincaré generators of the (3 + 1)-
dimensional theory and, correspondingly, of the space-time
dimensions that, from the (3 + 1)-dimensional action (66)
and the algebra (53), lead to the (2 + 1)-dimensional action.
With such reductions from the (3+1) gauge transforma-
tions (69), (70), (71), (54), (55), (56), (57), (58) and (59),
we shall obtain the corresponding gauge transformations
in (2 + 1) dimensions.

The dimensional reduction leading from the (3 + 1)-
dimensional supergravity theory to (2 + 1) Chern–Simons
supergravity theory is given in Table 1 [10], where the
γ′s with multiple indices are antisymmetrized products
of gamma matrices, which for d dimensions satisfy the
relationship [20]

γi1i2······ik = αεi1i2······idγik+1······id
γd+1, (76)

with
α =

1
(d− k)

(−1)
1
2 k(k−1)+ 1

2 d(d−1)
. (77)

It is straightforward to verify that the (3 + 1)-gauge
transformations (69), (70) and (71), with the identifications
of this table of the dimensional reduction, are mapped onto

δξa = κa
bξ

b; δea = κa
be

b; δωab = −Dκab;

δψ = − 1
2
κabγabψ; (78)
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Table 1. Dimensional reduction leading from the (3 + 1)-
dimensional supergravity theory to (2 + 1) Chern–Simons su-
pergravity theory

Dimensional reduction
(3 + 1) dimensions (2 + 1) dimensions
e3 dx3

ea ea

ωab ωab

ωa3 0
ζa ζa

ζ3 0
ρa ρa

ρ3 0
κab κab

κa3 0
ψ ψ

γabc γabc

γ3 0

δξa = −ρa; δea = Dρa; δωab = 0; δψ = 0; (79)

δξa = −iεγaχ; δea = −2iεγaψ; δωab = 0;

δψ = Dε; (80)

i.e. onto the correct (2 + 1)-dimensional gauge transforma-
tions. In particular, the quantities that are set to a constant
in the table consistently have vanishing gauge transforma-
tions. In the same way we have

RAB =
(
Rab Ra3

R3b R33

)
=

(
Rab 0
0 0

)
, (81)

ωAB =
(
ωab ωa3

ω3b ω33

)
=

(
ωab 0
0 0

)
, (82)

V A =
(
V a

V 3

)

=
(
ea +Dξa + i(2ψ +Dχ)γaχ

dx3

)
, (83)

Ψ = ψ +Dχ, (84)

where Dξa = dξa + ωa
b ξ

b; Dχ = dχ− 1
2ω

abγabχ.
From (76) we see that, for d = 4 and k = 3,

γABC = −εABCDγDγ
5, (85)

which allows one to write the action for (3 + 1)-dimensional
supergravity in the form

S4D =
∫
εABCD

(
RABV CV D +

1
3!
ΨγABCV DDΨ

)
.

(86)
By substituting the content of the table of dimensional
reduction and (81) and (82) into the action (86), one gets

S4D =
∫ (

2εabc3R
abV c +

4
3!
εabc3Ψγ

abcDΨ

)
dx3. (87)

Using (83) and (84) and the identity γab = −iεabcγ
c we

find that the first term is

2εabc3R
abV cdx3 = (2εabc3R

abec + 2εabc3R
abDξc (88)

− 4Rabψγabχ− 2Rab(Dχ)γabχ)dx3.

Using (76), γabc = −εabcI, and the identities DDχ =
1
2R

abγabχ;χγabψ = −ψγabχ, wefind that the second term is

4
3!
εabc3Ψγ

abcDΨdx3 =
(

4
3!
εabc3ψγ

abcDψ (89)

+ 4D(χDψ) + 4Rabψγabχ+ 2Rab(Dχ)γabχ
)
dx3.

By substituting (88) and (89) in (87) we obtain

S4D =
∫ (

2εabc3R
abec +

4
3!
εabc3ψγ

abcDψ.

+ 2εabc3R
abDξc + 4D(χDψ)

)
dx3.

Using the Bianchi identity DRab = 0, εabcε
abc = −3!

and (76) with d = 3 and k = 3, we find that the action for
(2 + 1)- supergravity is given by

S4D −→ S3D =
∫
εabcR

abec + 4ψDψ + surface term,

(90)
which proves that the dimensional reduction from (3 + 1)-
dimensional supergravity to (2 + 1)-supergravity is possi-
ble.

4 Comments

We have shown that the successful formalism proposed
in [10,11] can be extended to the supersymmetric case. That
is, (3 + 1)-dimensional supergravity can be dimensionally
reduced to supergravity in (2+1) dimensions following the
method of [10,11].

Finally we can say that supergravity genuinely invariant
under the Poincaré supergroup [3, 4] is a natural context
to connect, preserving the invariance under the Poincaré
supergroup, such a theory with (2 + 1)-dimensional super-
gravity.

It is interesting to note that all the terms containing
ξa, χ disappear from the action and that ea, ψ can be in-
terpreted as the space-time dreibein and gravitino, and
yet the theory is invariant under the Poincaré supergroup,
contrary to what happens in (3 + 1) dimensions. The ab-
sence of the ξa, χ variables of (90) and the interpretation
of ea, ωab and ψ as gauge fields makes of (90) an action
that can be conceived as a Chern–Simons three form.
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